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Neural activity in brain areas involved in the planning
and execution of eye movements predicts the outcome
of an upcoming perceptual decision. Many real-world
decisions, such as whether to swing at a baseball pitch,
are accompanied by characteristic eye-movement
behavior. Here we ask whether human eye-movement
kinematics can sensitively predict decision outcomes in a
go/no-go task requiring rapid interceptive hand
movements. Observers (n¼ 45) viewed a moving target
that passed through or missed a designated strike box.
Critically, the target disappeared briefly after launch, and
observers had to predict the target’s trajectory,
withholding a hand movement if it missed (no-go) or
intercepting inside the strike box (go). We found that go/
no-go decisions were reflected in distinct eye-movement
responses on a trial-by-trial basis: Eye-position error and
targeting-saccade dynamics predicted decision outcome
with 76% accuracy across conditions. Model prediction
accuracy was related to observers’ decision accuracy
across different levels of task difficulty and sensory-
signal strength. Our findings suggest that eye
movements provide a sensitive and continuous readout
of internal neural decision-making processes and reflect
decision-task requirements in human observers.

Introduction

Every baseball fan loves the sound of a hitter’s bat
colliding with the baseball to hit a home run. Just prior
to this magical moment, the batter has to decide

whether to swing at the pitch by rapidly decoding and
predicting the ball’s motion trajectory. Perceptual
decisions in such situations rely on a hierarchy of brain
areas involved with sensory processing and motor
control (Gold & Shadlen, 2007; Hanks & Summerfield,
2017; Heekeren, Marrett, & Ungerleider, 2008; Schall,
2013). Importantly, activity in these brain areas is
altered prior to the choice response. Reliable neural
signatures, reflecting the outcome of an upcoming
perceptual decision, have been observed across differ-
ent tasks and species (Bennur & Gold, 2011; Crapse,
Lau, & Basso, 2018; Ding & Gold, 2013; Gold &
Shadlen, 2000; Heinen, Rowland, Lee, & Wade, 2006;
Kim, Badler, & Heinen, 2005; Liu & Pleskac, 2011;
Pape & Siegel, 2016; Pho, Goard, Woodson, Crawford,
& Sur, 2018; Shadlen & Newsome, 1996; Yates, Park,
Katz, Pillow, & Huk, 2017). However, the link between
decision signals and continuous motor actions such as
smooth-pursuit eye movements is less well understood.

Here we ask whether decision outcome in a rapid go/
no-go interception task can be reflected in humans’ eye-
movement responses on a trial-by-trial basis. Many of
the brain areas involved in the control of eye
movements also carry decision signals. In natural tasks,
these decision signals are ultimately linked to the action
outcome—for example, batters will only swing at
pitches they judge to be hittable. Eye movements
closely reflect task requirements and action goals and
provide a continuous update of the action space
(Brenner & Smeets, 2017; Hayhoe, 2017; Hayhoe,
McKinney, Chajka, & Pelz, 2012; Johansson, Westling,
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Bäckström, & Flanagan, 2001; Land, Mennie, &
Rusted, 1999; Smeets, Hayhoe, & Ballard, 1996).
Moreover, eye movements are modulated by decision
formation even when the eye movements are task
irrelevant—for example, when they are not indicating
the choice response in a visual-discrimination task (Joo,
Katz, & Huk, 2016). Given the close link between
neural activity in oculomotor areas and decision
formation, and between perceptual decisions and
action goals, we propose that eye movements might be
a sensitive indicator of decision outcome.

We developed a rapid interception task called
EyeStrike, in which observers had to make a perceptual
decision and predict whether a briefly presented moving
target would pass or miss a designated strike box
(Figure 1A). Similar to ocular baseball, a paradigm
developed by Heinen and colleagues (Kim et al., 2005),
observers were instructed to withhold an action if they
judged the target to be outside the strike box (no-go)
and to otherwise initiate an action (go). In contrast to
ocular baseball, observers in EyeStrike were asked to
track the visual target during decision formation with
their eyes and to indicate their choice by withholding or
initiating an interceptive hand movement. This allowed
us to decode decision making from a continuous
natural eye-movement response. We related observers’
eye movements to the decision outcome (go vs. no-go).
Congruent with decision signatures in neural activity,
we found that go/no-go decisions were reflected in
distinct eye-movement responses on a trial-by-trial
basis, and that eye-movement-based prediction accu-
racy was related to observers’ decision accuracy. Model
prediction accuracy was higher for easy versus hard

task versions and increased with increasing signal
strength, suggesting that eye-movement signatures also
reflect sensory-signal accumulation toward a decision
threshold.

Methods

Observers

We collected data from 45 male observers (26
members of the University of British Columbia male
varsity baseball team and 19 age- and gender-matched
nonathletes; mean age: 20.6 6 1.9 years) with normal
or corrected-to-normal visual acuity; 39 were right-
handed, six were left-handed (dominant hand was
defined as the throwing hand). All observers were
unaware of the purpose of the experiment. The
experimental protocol adhered to the Declaration of
Helsinki and was approved by the University of British
Columbia Behavioral Research Ethics Board; observers
gave written informed consent prior to participation.

EyeStrike paradigm

Observers were asked to track a moving target, a
black Gaussian dot (SD¼ 0.388) with a diameter of 28
of visual angle, and to predict whether the target would
pass (‘‘go’’ response required) or miss (‘‘no-go’’
required) a designated strike box (Figure 1A and 1B).

Figure 1. Experimental procedure and design. (A) Observers were asked to fixate on a small black Gaussian dot (6158 from screen

center). After 0.5–1 s, the target moved along a diagonal linear path and disappeared after being shown briefly (100–300 ms).

Observers had to withhold a hand movement if the target missed a strike box (no-go) and intercept the target inside the strike box if

it passed through (go). Observers received feedback about their interception position (red disk) in pass trials and about the target’s

final position (black X) in all trials. (B) Paradigm design. The target launched either upward or downward at one of four angles (58, 78,

108, or 128). Trajectories that passed or missed close to the corners of the strike box (78 and 108) were more difficult.
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We instructed observers to withhold a hand movement
in miss trajectories and to intercept the ball with their
index finger while it was in the strike box in pass
trajectories. Depending on the target speed, observers
had a time window of 150–170 ms to intercept the
target inside the box. Each interception started from a
table-fixed position and was made with the dominant
hand.

Each trial started with drift correction during fixation
on a target presented 158 to the left or right of the screen
center. During drift correction, the eye had to be within
a 1.48 radius of the fixation target for 0.5–1 s. Stimulus
motion was always into the ipsilateral field—that is, for
right-handed observers, stimulus motion was from left
to right (see example trial in Figure 1A), and vice versa.
Then the stimulus followed a linear, diagonal path that
either hit or missed a darker gray (31.5 cd/m2) strike box
that was 683108 in size and offset by 128 from the center
to the side of interception (Figure 1B). Stimulus velocity
followed natural forces (gravity, drag force, Magnus
effect; Fooken, Yeo, Pai, & Spering, 2016). Easy
trajectories clearly passed through (launch angle: 658)
or clearly missed the strike box (launch angle: 6128).
Difficult trajectories passed (launch angle: 678) or
missed (launch angle: 6108) the strike box close to its
corners. Importantly, the target disappeared shortly
after launch, yielding different degrees of motion-signal
strength. A combination of different viewing durations
(100–300 ms) and stimulus speeds (368/s or 418/s)
resulted in visible trajectory lengths ranging from 3.68

(short or weak signal strength) to 12.38 (long or strong
signal strength). All conditions were randomized and
equally balanced. We instructed observers to track the
target with their eyes and to follow its assumed
trajectory even after it had disappeared. Each trial ended
either when observers intercepted the target or when the
target reached the end of the screen (1–1.1 s). At the end
of each trial observers received feedback about their
performance; target end position was shown, and correct
or incorrect decisions were indicated (see Figure 1A).
Each observer performed a familiarization session (16
trials; full trajectory visible), followed by 384 experi-
mental trials in which the target disappeared.

We defined four response types following conven-
tions in the literature (Kim et al., 2005; Yang, Hwang,
Ford, & Heinen, 2010). Trials were classified as correct
go if observers made an interception (i.e., touched the
screen) in response to a pass trajectory and as incorrect
go if they moved their hands more than halfway to the
screen during a miss trajectory. Trials were classified as
correct no-go or incorrect no-go if observers withheld a
hand movement or moved their hand less than halfway
to the screen in response to a miss or pass trajectory,
respectively. Decision accuracy was calculated as the
percentage of all correct go and no-go responses.

Visual display and apparatus

The visual target was shown at a luminance of 5.4
cd/m2 on a uniform gray background (35.9 cd/m2).
Stimuli were back-projected onto a translucent screen
with a PROPixx video projector (VPixx Technologies,
Saint-Bruno, Canada; refresh rate: 60 Hz; resolution:
1,2803 1,024 pixels). The displayed window was 44.53
36 cm or 558 3 458 in size. Stimulus display and data
collection were controlled by a PC (NVIDIA GeForce
GT 430 graphics card), and the experiment was
programmed in Matlab 7.1 using Psychtoolbox 3.0.8
(Brainard, 1997; Kleiner et al., 2007; Pelli, 1997).
Observers were seated in a dimly lit room at 46 cm
distance from the screen with their head supported by a
combined chin and forehead rest.

Eye- and hand-movement recordings and
preprocessing

Eye-position signals from the right eye were recorded
with a video-based eye tracker (EyeLink 1000 tower
mount; SR Research Ltd., Ottawa, Canada) and
sampled at 1000 Hz. Eye movements were analyzed off-
line using custom-made routines in Matlab. Eye
velocity profiles were filtered using a low-pass, second-
order Butterworth filter with cutoff frequencies of 15
Hz (position) and 30 Hz (velocity). Saccades were
detected based on a combined velocity and acceleration
criterion: Five consecutive frames had to exceed a fixed
velocity criterion of 508/s; saccade on- and offsets were
then determined as acceleration minima and maxima,
respectively, and saccades were excluded from pursuit
analysis. Pursuit onset was detected in individual traces
using a piecewise linear function fitted to the filtered
position trace (Fooken et al., 2016).

Finger position was recorded with a magnetic
tracker (3D Guidance trakSTAR; Ascension Technol-
ogy Corp., Shelburne, VT) at a sampling rate of 240
Hz; a lightweight sensor was attached to the index
fingertip of the observer’s dominant hand with a small
Velcro strap. The 2-D finger interception position was
recorded in screen-centered x- and y-coordinates. Each
trial was manually inspected, and a total of 345 trials
(2%) were excluded across all observers due to eye- or
hand-tracker signal loss.

Eye-movement data analyses

The stimulus characteristics in this paradigm trig-
gered tracking behavior that most closely resembled
short periods of smooth pursuit and catch-up saccades
(de Brouwer, Yuksel, Blohm, Missal, & Lefèvre, 2002;
Fooken et al., 2016). To evaluate this tracking behavior
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we analyzed eye-movement position and velocity
relative to target position and velocity and extracted
the following pursuit measures: horizontal eye-position
error, defined as the mean deviation across the entire
trial (from eye-movement onset to stimulus offset) of
horizontal eye position relative to horizontal target
position; relative eye velocity (gain) during the closed-
loop phase (140 ms after pursuit onset until intercep-
tion); pursuit latency; and open-loop velocity (pursuit
onset until the start of the closed-loop phase). We
further extracted the number of catch-up saccades, the
latency of the initiation saccade and each trial’s
targeting saccade (i.e., in pass trials this is the saccade
into the strike box), and average saccade amplitude.

Statistical analysis

Varsity baseball players and nonathletes did not
differ significantly in overall eye- and hand-movement
accuracy. These results were averaged across groups.
However, group differences are reported for task-
related performance in EyeStrike. Effects of task
difficulty and signal strength on decision-making
accuracy were examined using repeated-measures
analysis of variance with the between-subjects factor of
player (baseball player vs. nonathlete) and within-
subjects factors of difficulty and strength. Differences
between conditions (e.g., easy vs. hard) were evaluated
using Welch’s two-sample t tests. All statistical analyses
were performed in R. To identify the pursuit and
saccade measure that predicted decision outcome best,
we ran a logistic regression model. We trained trial-by-
trial data to be fitted to a binomial categorization (go
vs. no-go) using a generalized linear model imple-
mented with the Caret package in R (Kuhn, 2008).
Variable importance was evaluated using the Caret
function varImp. To evaluate the relationship between
single eye-movement predictors (position error and
targeting-saccade latency) and behavior (go vs. no-go),
we report the accuracy of all cross-validation iterations
and Cohen’s unweighted kappa, a measure of agree-
ment for categorical prediction (Kuhn, 2008).

Choice probability

To simulate decision outcomes based on eye-
movement behavior in EyeStrike, we adopted a method
based on signal-detection theory (Green & Swets,
1966). In this framework, the paradigm can be viewed
as a two-alternative choice task in which hand
movement (go vs. no-go) is the decision outcome and
eye-movement behavior is the measure used to predict
the response. To evaluate the validity of eye movements
as decision predictor, we calculated receiver operating
characteristic (ROC) curves. The method to calculate
the ROC curve of a given eye-movement measure was

as follows: We divided the range between minimum and
maximum measured value in 100 equal steps. We then
formulated a set of decision rules: We predicted that
observers would move their hands based on a
continuous criterion starting with the maximum value
(100% go prediction) and decreasing by equal step sizes
until the minimum value was reached (100% no-go
prediction). Choice probability can then be evaluated
by calculating the area under the curve (AUC), which
yields an estimate of the probability that the observer’s
behavior (go vs. no-go) has been predicted correctly
(Bamber, 1975; Kang & Maunsell, 2012). The AUC
was calculated using trapezoidal numerical integration
using the Matlab function trapz. Permutation tests
were used to assess the significance of choice-proba-
bility data (Mayo & Sommer, 2013).

Results

We related eye movements to rapid go/no-go
decisions using our EyeStrike paradigm, in which a
visual stimulus passed or missed a designated strike
box. We assessed interceptive hand movements (deci-
sion outcome) and eye movements under different
levels of uncertainty and motion-signal strength.
Uncertainty was manipulated by varying task difficul-
ty; different target launch angles resulted in trajectories
that either clearly or closely passed or missed the strike
box, resulting in easy or hard trajectories (Figure 1B).
Motion-signal strength was manipulated by limiting
target-viewing duration. Different combinations of
viewing durations and target speeds resulted in visible
trajectory lengths ranging from short (3.68), producing
a noisy or weak motion estimate, to long (12.38),
producing a less noisy, or strong, motion-signal
estimate.

Decision-making accuracy

We defined decision-making accuracy as the ratio of
correct go and no-go decisions across all trials for each
observer. Observers across groups performed well in
EyeStrike, with 82.3% (SD¼ 1.2%) average decision
accuracy. Overall, decision accuracy was higher for
pass trajectories (M ¼ 90.4% 6 0.8%) than for miss
trajectories (M ¼ 74.1% 6 2.0%), t(44) ¼ 6.86, p ,
0.001 (compare data points in light gray vs. dark gray
shaded areas in Figure 2A). Observers made more
accurate decisions for easy trajectories (M ¼ 90.0% 6
1.3%) compared to hard ones (M ¼ 74.7% 6 1.3%;
Figure 2B), reflected in a significant main effect of
difficulty, F(1, 43)¼ 466.0, p , 0.001. Observers also
made more accurate decisions with increasing visible
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trajectory length: Decision accuracy varied between
76.3% 6 1.5% for the shortest trajectory and 83.5% 6
1.4% for the longest trajectory, reflected in a main
effect of strength, F(5, 215)¼ 20.8, p , 0.001 (Figure
2C). This improvement with increasing motion-signal
strength was stronger in easy than in difficult trials,
reflected in a significant Difficulty 3 Strength interac-
tion, F(5, 215)¼ 9.4, p , 0.001.

Eye-movement signatures in pass and miss trials

Briefly presented moving targets in EyeStrike reli-
ably elicited a combination of smooth-pursuit and
saccadic eye movements. In response to target motion
onset, observers either initiated smooth pursuit (73% of
all trials) or maintained fixation and then initiated a
saccade toward the target. Observers strongly antici-
pated the target’s motion direction and initiated pursuit
rapidly (mean pursuit latency: 29 6 4 ms), thus
maximizing pursuit in the presence of ultrashort
presentation durations. The target disappeared after
100–300 ms and traveled approximately 800 ms before
entering the strike box (see time markers in Figure 3A).
For go responses (Figure 3A, upper panels), observers
tended to follow the target closely with their eyes until
making a targeting saccade into the strike box. For no-
go responses, observers’ eye movements followed the
trajectory to the strike-box corner where they assumed
the target to miss, using a combination of pursuit and
saccades (Figure 3A, lower panels). In interception
trials (correct/incorrect go), observers initiated their
hand movement with a latency of 416 ms (SD¼ 8 ms)
on average, and they intercepted close to the final eye

position (Euclidean distance between eye and finger at
time of interception: 2.58 6 0.58). Observers’ intercep-
tion positions were clustered around the actual target
position, even though they were instructed to hit
anywhere inside the strike box (Figure 3B).

Decoding decisions from eye movements

In order to decide whether or not to initiate a hand
movement, observers had to discriminate trajectories as
either pass or miss. Figure 4 shows the absolute eye
position relative to the target trajectory for two
representative observers (Figure 4A and 4B) and
averaged across all observers (Figure 4C). Eye position
differed clearly between go and no-go responses
(compare green and blue traces). In incorrect trials—
observers either moved their hand to intercept a target
that missed the strike box or withheld a hand
movement when the target passed the strike box—eye
positions followed a path in between pass and miss
trajectories, going toward the corners of the strike box
(see average final vertical eye positions in Figure 4C).
In incorrect trials, eye movements may therefore reflect
observers’ indecision as to whether the target would
pass or miss the strike box.

Next, we investigated which eye-movement param-
eters best captured the observed differences between
pass and miss trials and might therefore indicate
decision outcome. We analyzed standard smooth-
pursuit measures, relative velocity (gain), absolute and
relative eye-position error, and saccade measures
(number, latency, amplitude of initial and targeting
saccade). To select the eye-movement parameters that

Figure 2. Decision-making accuracy in EyeStrike. (A) Decision accuracy (ratio of all correct go and no-go responses to all trials) and

incorrect responses for each launch angle; each open circle reflects the average for one observer; horizontal lines represent group

averages (N¼ 45). (B) Decision accuracy for easy compared to hard decisions. Open circles reflect the observer average, separated by

baseball players (black) and nonathletes (purple). (C) Decision accuracy for short, medium, and long target presentations. Averages of

all observers are indicated by bar height.
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best reflected decision outcome, we included all
extracted pursuit and saccade measures in a logistic
regression model. The model identified relative (hori-
zontal) eye-position error (j¼ 0.25) and latency of the
targeting saccade (j ¼ 0.28) as the best predictive
measures for go/no-go responses. Both these measures
are related to the timing of the eye movement rather
than the absolute spatial position of the target.

Horizontal eye-position error across all trials was
significantly more positive during go (M¼ 1.55 6 0.22)
compared to no-go responses (M¼0.01 6 0.19), t(44)¼
8.00, p , 0.001 (Figure 5A), indicating that the eye
tended to be ahead of the target when a go decision was
made. Observers made overall fewer saccades in trials
in which they decided to go (Mgo¼ 2.46 6 0.06 vs.
Mno-go ¼ 2.89 6 0.07), t(44) ¼ 8.96, p , 0.001,

Figure 3. Eye- and hand-movement behavior in EyeStrike. (A) 2-D eye position from a single representative observer for four possible

trial outcomes, showing tracking of the target (gray solid line) with a combination of smooth pursuit (solid colored lines) and saccades

(dashed colored lines). The time course of the trial is indicated by 100-ms time stamps. Each circle marks the end of a 100-ms interval

(filled black circles: target visible; filled gray circles: target has disappeared). In go responses (upper panels), observers moved their

hand (gray trajectory) to intercept (red disk) the target inside the strike box. In no-go responses (lower panels), observers withheld a

hand movement. Colors indicate correct go (green), correct no-go (blue), and incorrect decisions (red). (B) Heat map of all

interception trials across observers. Total number of interceptions in each square was counted and is indicated by color. Observers’

hand movements naturally curved toward the lower half of the strike box.
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indicating smoother tracking, and initiated the target-

ing saccade earlier than for no-go responses (Mgo¼ 558

6 9 ms vs. Mno-go ¼ 700 6 11 ms), t(44) ¼ 14.2, p ,
0.001 (Figure 5B). The observed time-binned frequency

of targeting saccades indicates that this eye-movement

measure differentiated between go and no-go responses

starting at 300–350 ms after target onset (Figure 5B).
At the 450-ms time point, a targeting saccade was
approximately four times more likely to have occurred
in a go trial than in a no-go trial, indicating clearly
different saccade-pattern signatures for different deci-
sion outcomes.

Figure 4. 2-D eye position relative to target trajectories. (A) Eye position for Subject 4 (baseball player) and (B) eye position for Subject

22 (nonathlete). In both panels, each line represents a single trial (384 per observer). Eye position followed the target trajectories

(thin gray lines) for go (green lines) compared to no-go responses (blue lines). Eye position in incorrect trials (go and no-go) falls

between pass and miss trajectories (red lines). (C) Eye position during the first 750 ms of each trial averaged across all observers (N¼
45). Filled circles indicate final vertical eye position for all correct and incorrect decision outcomes.

Figure 5. Eye-movement measures during go (green) and no-go (blue) responses. (A) Frequency of average position error across all

trials and observers. Vertical lines indicate the group average for go and no-go responses. (B) Frequency of targeting saccades

initiated at a given time with respect to stimulus onset. Both panels are for N ¼ 45.
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Accuracy of eye-movement-based decision
indicators

The observed differences in eye movements between
go and no-go responses might allow us to read out
decision outcomes based on either of the two eye-
movement parameters identified as best predictors by
the regression model. We applied a method adopted
from signal-detection theory (Green & Swets, 1966),
which has also been used to decode decision outcomes
from single-neuron activity in visual-discrimination
tasks (Britten, Shadlen, Newsome, & Movshon 1992;
Celebrini & Newsome, 1994; Kang & Maunsell, 2012;
Yang et al., 2010). Following this method, EyeStrike
can be viewed as a two-alternative forced-choice task in
which hand movement (go vs. no-go) is the decision
outcome and eye-movement behavior is the measure
used to detect the response. For each trial, the model
can either correctly predict a go (hit) or no-go response
(correct rejection) or incorrectly predict a go (false
alarm) or no-go response (miss). The configuration of
correct versus incorrect predictions depends on the
chosen decision criterion. With a conservative criterion
we predict a no-go response in most trials. This will
yield a low number of incorrect go predictions (false
alarms), but it will also lead to relatively few correct go
predictions (hits). Conversely, a liberal criterion will
lead to a high hit rate, but also to many false alarms.
With a continuously changing decision criterion we can
calculate ROC curves (Green & Swets, 1966) for each
observer reflecting the trade-off between prediction
success (hit) and error (false alarm) on a trial-by-trial
basis. We calculated the AUC for each observer’s ROC
curve to obtain an estimate of the goodness of the
model’s prediction of individual observers’ go/no-go
responses. An AUC of 100% indicates that eye
movements perfectly reflect go/no-go decisions; an
AUC of 50% is equivalent to a random prediction or
chance.

Figure 6A and 6B shows individual ROC curves for
Subjects 16 (baseball player) and 45 (nonathlete),
separated by task difficulty. Subject 16’s go/no-go
response could be predicted with 98% accuracy using
eye-position error as the decision criterion, whereas
targeting-saccade latency as the criterion yielded
predictions of �85% accuracy. Conversely, Subject
45’s decision outcome was best predicted by targeting-
saccade latency (82% accuracy). These representative
examples illustrate that eye-position error was the
better predictor for some observers (n ¼ 23), whereas
targeting-saccade latency was the more sensitive
predictor for others (n ¼ 22). We formed two
subgroups of observers based on which of the two
predictors was more sensitive, and calculated ROC
curves across observers within each group while
taking task difficulty into account (Figure 6C). For

both groups, go/no-go responses could be predicted
well above chance (mean AUC: 76%). Importantly,
predictions were above chance for each of the tested
45 observers (range: 60%–98% in measured data vs.
46%–54% in permutation test), t(45.6) ¼ 25.77, p ,
0.001. Predictions were overall more accurate for easy
(mean AUC: 77%) compared to hard trajectories
(mean AUC: 74%), t(44)¼ 3.23, p¼ 0.002. Predictions
were also more accurate the more reliable the target’s
motion signal was (Figure 6D), increasing from 74%
for the shortest trajectory to 80% for the longest
trajectory, t(44)¼5.36, p , 0.001. The finding that our
decision prediction based on observers’ eye move-
ments increases with motion-signal strength indicates
that eye movements reflect the accumulation of
sensory evidence over time. Next we related each
observer’s AUC to his decision accuracy. We observed
a strong positive relationship between AUC and
decision accuracy across different levels of task
difficulty (Figure 6E) and signal strength (Figure 6F).
Taken together, these results suggest that eye move-
ments are sensitive indicators of decision outcome and
differentiate between decisions based on task difficulty
and signal strength.

Decision making in varsity baseball players
versus nonathletes

We tested two populations of observers, college
varsity-level baseball players and nonathletes. Both
groups were similar in terms of general eye-movement
accuracy (no significant main effect of player on any of
the reported eye measures). However, decision accura-
cy was significantly higher for varsity baseball players
(M¼ 85.5% 6 1.0%) than for nonathletes (M¼ 78.0%
6 2.1%; compare black with purple data points in
Figure 2B and 2C). This result was reflected in a
significant main effect of player, F(1, 43) ¼ 12.0, p ¼
0.001, in a repeated-measures analysis of variance.
Correspondingly, decision predictions using the ROC
model were higher for baseball players (mean AUC:
82%) than for nonathletes (mean AUC: 75%), t(33.95)
¼ 3.05, p¼ 0.004. Decision-prediction accuracy in both
groups was equally affected by difficulty and signal
strength (Table 1).

Discussion

We developed a rapid interception task that allowed
us to systematically evaluate eye movements during go/
no-go decisions. Our key findings are that eye
movements systematically differed between go and no-
go responses, and that these differences could be read
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out prior to the choice response, thus predicting

decision outcome. Prediction accuracy was related to

observers’ decision accuracy under different levels of

task difficulty and motion-signal strength. These results

go beyond merely predicting whether or not the hand

will move and suggest that human eye movements can

be used to sensitively decode and predict decision

outcome under different sensory and task constraints.

Figure 6. Decoding decision outcome from eye-movement parameters. (A) Receiver operating characteristic (ROC) curve for a

representative observer (baseball player) for whom decision outcome was modeled more accurately by eye-position error (orange).

(B) ROC curve for another representative observer (nonathlete) for whom final saccade latency was the better decision predictor

(black). (C) Averaged ROC curves across observers whose decision outcome was better predicted by eye-position error (n ¼ 23;

orange) versus final saccade latency (n¼ 22; black). Curves are shown separately for easy (dashed) and hard (solid) trajectories. (D)

Averaged group ROC curves separated for long (dashed) and short (solid) target presentations. (E) Relationship between decision

accuracy and each observer’s area under the curve separated by easy (open circles; dashed regression fit) and hard (filled circles; solid

regression fit) target trajectories. Each data point depicts the per-observer average. (F) Relationship between decision accuracy and

each observer’s area under the curve separated by long (open circles; dashed regression fit) and short (filled circles; solid regression

fit) target presentations.

Difficulty (%) Signal (%)

Easy Hard Strong Weak

Baseball players 82.9 6 6.8 80.9 6 6.5 87.1 6 6.2 80.7 6 6.6

Nonathletes 76.8 6 7.3 74.0 6 8.6 80.0 6 7.3 74.7 6 9.8

Table 1. Decision-prediction accuracy (area under the curve; group average 6 SD) for baseball players and nonathletes separated by
difficulty (easy vs. hard) and signal strength (strong vs. weak).
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In EyeStrike, observers naturally viewed a visual
target that followed either a pass or miss trajectory
(stimulus space) and indicated their choice by initiating
or withholding a hand movement (decision outcome).
Stimulus space and decision outcome are linked by an
internal machinery that processes sensory information
and forms an associated motor command (Gold &
Shadlen, 2007; Heekeren et al., 2008; Platt, 2002). In
EyeStrike there are two possible choices—go and no-
go—which could be reflected in two distinct internal
states. However, if the choice is difficult or less
reliable—for example, the ball passes or misses close to
the corner of the strike box or is visible for a very short
time—the two internal states may overlap, potentially
causing decision errors. We found that eye movements
in incorrect decision trials followed a path in between
pass and miss trajectories, and in between eye
movements made during correct go and no-go choices
(Figure 4C). These results indicate that eye movements
not only reflect the decision outcome but might also
indicate an observer’s internal decision state and the
confidence with which a decision is reached.

Decision accuracy in behavioral visual-discrimina-
tion tasks is typically related to task difficulty and
signal strength (or noise level); for example, motion-
discrimination performance scales with motion coher-
ence (Britten et al., 1992; Lappin & Bell, 1976).
Congruently, task difficulty shapes neural activity
during decision making. Single-unit recordings in
macaque monkeys have shown that neural sensitivity in
the middle temporal visual area (Britten et al., 1992)
and superior colliculus (Basso & Wurtz, 1997; Horwitz
& Newsome, 2001) are closely related to perceptual-
discrimination performance. Interestingly, subsets of
neurons in the supplementary eye field and frontal eye
field take longer to decode more difficult perceptual
decisions (300–475 ms) compared to easy decisions
(175–190 ms) but reflect decision-outcome sensitively
regardless of level of difficulty (Yang et al., 2010; Yang
& Heinen, 2014). Importantly, the accuracy of pre-
dicting decision outcomes based on neural recordings
increases with increasing motion-signal strength (Brit-
ten et al., 1992; Horwitz & Newsome, 2001) and
decreasing task difficulty (Yang et al., 2010). Moreover,
saccades evoked by frontal-eye-field microstimulation
during perceptual decision making deviate toward the
stimulus motion direction. These deviations scale with
stimulus signal strength, indicating shared processing
of decision formation and oculomotor response (Gold
& Shadlen, 2000, 2003).

Similarly, studies in humans have found that easy
compared to difficult visual-categorization decisions
elicited a greater blood-oxygen-level-dependent re-
sponse in left dorsolateral prefrontal cortex (Heekeren,
Marrett, Bandettini, & Ungerleider, 2004). Single-trial
electroencephalographic analysis has revealed a deci-

sion-difficulty component evolving at around 220 ms
after stimulus presentation (Philiastides, 2006) for easy
compared to difficult visual-categorization decisions.
The present results, obtained in a large sample of
human observers, suggest that eye movements might
sensitively reflect task difficulty and signal strength as
well: Model predictions (AUC) were more accurate for
easy compared to hard trajectories and for targets that
were visible for a longer period of time (stronger
signal). An increase in motion-signal strength (i.e.,
higher coherence, higher contrast, or longer visibility)
generally boosts the decision signal, hence potentially
strengthening the predictive accuracy of the eye-
movement signature.

Our findings are also closely related to evidence
showing that eye movements can be modulated by
decision formation, and that decision making and
motor output are closely related. For example, neural-
population activity in the motor cortex measured using
magnetoencephalography has been shown to gradually
build up several seconds before execution of a choice
response, and to be usable to read out and predict
observers’ choices in a yes/no motion-detection task
(Donner, Siegel, Fries, & Engel, 2009; Pape & Siegel,
2016). Decision-related modulation has also been
found during motor execution. In an earlier study,
when a hand movement was perturbed just prior to the
choice response, the muscular reflex gain of the
perturbed arm was modulated by motion-coherence
strength, reflecting ongoing decision formation (Selen,
Shadlen, & Wolpert, 2012). Similarly, saccades indi-
cating choice in a direction-discrimination task have
been shown to be initiated earlier and to deviate farther
away from the nonselected target with increasing levels
of motion coherence—that is, stronger decision signals
(McSorley & McCloy, 2009). In another recent study,
task-unrelated visually guided saccades, performed in
between a visual discrimination and a button-press
response, were initiated earlier and faster in the
direction congruent with the decision, but they were not
modulated if observers viewed the moving stimulus
passively, thus directly linking them to the decision
(Joo et al., 2016). Taken together, these findings suggest
that decision-related processes continuously interact
with motor planning and execution.

Eye movements in natural behavior are character-
ized by task demands and action goals. Many studies
have shown convincingly that the eye leads the hand in
tasks related to pointing, hitting, catching, or any kind
of object-handling behavior (Bekkering, Adam, King-
ma, Huson, & Whiting, 1994; Belardinelli, Stepper, &
Butz, 2016; Johansson et al., 2001; Land et al., 1999;
Mrotek & Soechting, 2007). Congruently, there is
strong behavioral (Chen, Valsecchi, & Gegenfurtner,
2016; Danion & Flanagan, 2018; Fooken et al., 2016;
Leclercq, Blohm, & Lefèvre, 2013) and neurophysio-
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logical (Andersen & Cui, 2009; Crawford, Medendorp,
& Marotta, 2004; Dean, Hagan, & Pesaran, 2012;
Hwang, Hauschild, Wilke, & Andersen, 2014; Snyder,
Calton, Dickinson, & Lawrence, 2002) evidence for
interdependency between eye and hand movements, via
either common control or a parallel and coordinated
mechanism. Our time-critical decision task reveals
different eye-movement dynamics in go versus no-go
responses with regard to the targeting saccade of a trial.
In go responses, this saccade occurred significantly
earlier, thus allowing necessary time for planning an
accurate manual interception. In no-go responses, in
which the hand movement had to be inhibited, the
targeting saccade commonly targeted the corner of the
strike box. It had no relevance for leading the hand but
might have provided important visual information
confirming observers’ perceptual decision. Eye move-
ments therefore directly reflect the behavioral conse-
quences of a perceptual decision.

Conclusion

Previous research has shown that decision-related
neural responses can be used to read out an observer’s
intention even before a choice response is made. Here
we show that eye movements carry a decision signature
that is sensitive to task difficulty and sensory-signal
strength and relates to observers’ decision accuracy.
Eye movements can be viewed as a continuous readout
of ongoing sensorimotor processes and can be studied
to further our understanding of perception and
cognition in naturalistic tasks (Huk, Bonnen, & He,
2018). Even though our results were obtained using a
head-restrained paradigm, equivalent eye-movement
behavior (i.e., initial tracking followed by a predictive
saccade) is commonly observed in head-unrestrained
virtual-reality or real-world settings (Bahill & LaRitz,
1984; Hayhoe, 2017; Land & McLeod, 2000). Our
paradigm introduces ecological validity by allowing
unrestricted eye movements and by using a natural
hand movement to indicate the choice response. The
findings presented here might generalize to decision
making in the real world, such as batting in cricket or
baseball. Understanding how humans make decisions
in real-world tasks can therefore be significantly aided
by evaluating eye-movement responses. Our findings
provide a direct link between neural decision signatures
and continuous eye-movement responses, thus demon-
strating eye movements’ capacity to serve as sensitive
indicators of neural function outside of directly
recording brain activity.

Keywords: eye movements, manual interception,
prediction, decision making, visual motion
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